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Abstract

In this paper, we present a novel multi-modal optimization algorithm for finding

multiple local optima in objective function surfaces. We build from Species-based

Particle Swarm Optimization (SPSO) by using deterministic sampling to generate

new particles during the optimization process, by implementing proximity-based

speciation coupled with speciation of isolated particles, and by including “turbu-

lence regions” around already found solutions to prevent unnecessary function eval-
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uations. Instead of using error threshold values, the new algorithm uses the particle’s

experience, geometric mean, and “exclusion factor” to detect local optima and stop

the algorithm. The performance of each extension is assessed with leave-it-out tests,

and the results are discussed. We use the new algorithm called Isolated-Speciation-

based Particle Swarm Optimization (ISPSO) and a benchmark algorithm called

Niche Particle Swarm Optimization (NichePSO) to solve a six-dimensional rainfall

characterization problem for 192 rain gages across the United States. We show why

it is important to find multiple local optima for solving this real-world complex

problem by discussing its high multi-modality. Solutions found by both algorithms

are compared, and we conclude that ISPSO is more reliable than NichePSO at

finding optima with a significantly lower objective function value.

Key words: Particle swarm optimization, Metaheuristics, Multi-modal

optimization, Rainfall characterization

1 Introduction

Due to the complexity and non-linear nature of real-world optimization prob-

lems, it is often not possible to analytically obtain the derivative of the ob-

jective function. The lack of analytical derivatives of the objective function

forces the use of direct search approaches, which only require function evalua-

tions. However, direct search algorithms can suffer from converging to local op-

tima (Trabia, 2004). In order to overcome this shortcoming, population-based

search algorithms have received much attention to improve the exploration of
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the search space (Sotiropoulos et al., 2002).

Particle Swarm Optimization (PSO) (Eberhart and Kennedy, 1995; Kennedy

and Eberhart, 1995) is a population-based optimization method based on col-

lective artificial intelligence. PSO mimics the movement of birds in a flock shar-

ing information with each other (Acan and Gunay, 2005), and the way they

interact with each other is defined by topology. Individuals in the swarm rep-

resent parameter samples referred to as particles. Each particle in the swarm

keeps track of its own best solution found so far and shares the information

with topological neighbors to fly toward optimal solutions (Brits et al., 2007).

The basic PSO algorithm and variations of it have been used in a number

of areas including the bin-packing problem (Liu et al., 2008) and flowshop

sequencing (Tasgetiren et al., 2007; Tseng and Liao, 2008). A challenge in

PSO has been to locate global optima without getting trapped in local op-

tima (Hendtlass, 2003). Different topologies have been studied to enhance the

success rate of finding global optima (Brits et al., 2007). The gbest and lbest

topologies are defined for the original PSO (Eberhart et al., 1996). In gbest,

all the particles are neighbors to each other and share information globally.

Gbest helps particles converge quickly because they are all attracted to a

global best position. However, this topology is susceptible to getting trapped

in local optima because of limited exploration of the search space. In lbest, on

the contrary, only a specific number of particles share information with one

particle, and convergence occurs slowly compared to gbest. Therefore, with

lbest, there is a greater chance of finding the global optimum than with gbest.

More complicate topologies, among others, include the von Neumann topology

(Kennedy and Mendes, 2002) and the spatial topology (Suganthan, 1999).

In real-world problems, there may be more than one solution if global and

local optima are taken into account (i.e., multi-modal problems) (Hendtlass,

2003; Li, 2004; Brits et al., 2007), and it is often useful to obtain “maximally
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different” sub-optimal alternative solutions in order to gain insight to feasi-

ble solutions (Brill, 1979). PSO’s adaptive control of particles’ movement and

topological neighbors improves the exploration of the search space, which is a

promising feature for multi-modal problems (Li, 2004). NichePSO (Brits et al.,

2002a) is a multi-modal optimization algorithm that employs the Guaranteed

Convergence PSO (GCPSO) (van den Bergh and Engelbrecht, 2002) to im-

prove local convergence while maintaining the diversity of particles by forming

subswarms. Brits et al. (2007) showed that NichePSO outperforms lbest PSO

(Eberhart et al., 1996), nbest PSO (Brits, 2002; Brits et al., 2002b), sequen-

tial niching genetic algorithm (GA) (Beasley et al., 1993), and deterministic

crowding GA (Mahfoud, 1995). Cluster analysis is another technique to en-

hance the exploration of the search space (Kennedy, 2000; Li, 2004). Kennedy

(2000) applied the k-means algorithm to classify particles into groups, which

individually explore the search space. However, the main pitfall of this method

is that the number of clusters must be specified in advance without knowing

how many optima exist (Li, 2004). The Species-based PSO (SPSO), which uses

proximity-based grouping called “speciation,” was introduced by Li (2004);

Parrott and Li (2006); Li et al. (2008) to alleviate the shortcomings of the k-

means algorithm. Because the speciation radius is used to classify the swarm

population into subpopulations, referred to as “species,” there is no need to

pre-specify the number of clusters (Li, 2004). In SPSO, local optima are found

when the difference in value of the objective function of the true optima and of

the particle seeds is less than a threshold value. However, because the values

of the objective function of the true optima to which particles try to converge

are not known, SPSO cannot detect when a local optimum is found. This issue

renders SPSO not suitable for multi-modal problems.

In the study presented here, SPSO is extended not only to find multiple op-

tima but also to better explore the search space by generating new particles

using low-discrepancy sequences. Maaranen et al. (2007) used low-discrepancy
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sequences in a genetic algorithm to generate initial populations. They showed

that the initial populations generated from low-discrepancy sequences were

more spread out over the search space than those generated from pseudo-

random sequences. They also showed that low-discrepancy sequences helped

attain above-average genetic diversity when compared to pseudo-random se-

quences and the simple sequential inhibition process. In the algorithm intro-

duced in this paper, low-discrepancy sequences are used to generate an initial

population and new particles in each iteration to increase the uniformity of

the spatial distribution of the particles. In practice, the number of local op-

tima cannot be determined, which makes it impossible to verify if all optima

have been found. For this reason, a new stopping criterion is introduced based

on how well particles performed in the past iterations. In situations with a

large number of local optima, there may be a need for additional criteria for

evaluating and selecting local optima within a limited number of function eval-

uations. In such cases, deciding which local optima to focus on may play an

important role, but this issue of selecting local optima is beyond the scope of

the paper.

The objective of the new algorithm is to find multiple local optima within a

limited number of iterations in real-world problems. However, because not all

solutions found are necessarily true local optima, their reliability needs to be

examined in a comparison with a benchmark algorithm. By this comparison,

we can see how reliable ISPSO’s solutions are.

This paper is organized as follows. Section 2 describes the particle’s movement

in PSO and discusses the extensions to SPSO introduced in this study. The

experimental setup and results are discussed in Section 3. In Section 4, the

necessity of multi-modal optimization in a rainfall simulation model is dis-

cussed, and ISPSO is compared with NichePSO by applying both algorithms

to the simulation model. Solutions found by the two algorithms are compared

to figure out which algorithm actually found more true optima. Finally, the
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conclusions are given in Section 5.

2 Isolated-Speciation-based PSO

In this study, SPSO has been modified to enhance the discovery of sub-

optimal yet potentially attractive solutions. In addition, a deterministic sam-

pling strategy was employed to increase the uniformity of particle samples. In

the Isolated-Speciation-based PSO (ISPSO), possible solutions found by the

swarm are called “nests,” and finding them is referred to as “nesting.”

2.1 Species-based PSO

In PSO, each particle represents a parameter sample, and the swarm consists

of a population of particles. Particles in the swarm share their information with

topological neighbors to move around the search space toward optimal solu-

tions. In a D-dimensional problem space, particle i’s current position and ve-

locity are represented as ~xi = (xi,1, xi,2, . . . , xi,D) and ~vi = (vi,1, vi,2, . . . , vi,D),

respectively. Particle i uses its private best position ~pi (i.e., pbest) and the lo-

cal best position ~pl (i.e., lbest) that its neighboring particles have found so far

to determine its velocity at the next time step. The dth dimensional element of

particle i’s velocity at time step t+ 1 is updated using the constriction factor

χ (Clerc, 1999) as follows:

vi,d(t+ 1) = χ(vi,d(t) + ψ1r1(t)(pi,d − xi,d) + ψ2r2(t)(pl,d − xi,d))

where ψ1 and ψ2 are the cognitive and social coefficients, respectively, that

are set as control parameters prior to an optimization run; r1(t) and r2(t) are

random numbers from the uniform distribution between 0 and 1; and χ is

defined as χ = 2/|2− ψ −√ψ2 − 4ψ| where ψ = ψ1 + ψ2 and ψ > 4.
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The particle velocity is constrained between −~vmax and ~vmax. Particle i’s po-

sition at time step t+ 1 is updated as

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1).

The pre-specified range [~xmin, ~xmax] is used to restrict ~xi(t+ 1) to the feasible

search space.

The Species-based PSO (SPSO) groups particles in the swarm into species

based on proximity, which is measured by the Euclidean distance. Speciation

takes place in each iteration of the optimization process because the movement

of particles in the search space continuously changes the distance between

particles. The best particle in a species is referred to as the species seed and

is considered the local best in the species.

2.2 Sampling strategy for high uniformity

To increase the spatial uniformity of particles, the swarm is initialized with

low-discrepancy sequences or quasi-random sequences instead of pseudo-random

sequences (i.e., from a uniform distribution). Since the discrepancy measures

how much samples are deviated from the spatial uniformity of the particle

distribution, a low discrepancy indicates a high uniformity in the particle

distribution. In ISPSO, particle generation is controlled by Sobol’ sequences

(Sobol’, 1967) with the Owen and Faure-Tezuka scrambling techniques (Owen,

1998; Faure and Tezuka, 2002).

2.3 Refined species seed

When any species in SPSO converges to a certain point, particles belonging

to the species would not move actively because the species seed’s local and

individual best positions will be very close to each other. Because this stagna-
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tion can cause premature nesting (i.e., early convergence to non-sub-optimal

solutions), the memory of the current particle generation is used to refine the

local best of any newly created species seed in each iteration. When a species

is generated, the seed checks if there are particles with better fitness values

than its own within the species radius rspecies. This event may happen when

there is a superior particle within the region of the species that belongs to

a superior species. In this case, the local best of the new species seed is set

to the current position of the superior particle. Furthermore, the seed also

checks the individual best position of each particle in the swarm to see if any

better positions were explored in the past within the region of the species.

The seed in a new species may not know the best position already visited by

the algorithm within the speciation region because particles, that have visited

a better position in the region, may not be still within the same speciation

region. The species seed goes through all the individual best positions in the

swarm falling within its species radius and if it finds a better fitness value,

the seed takes that position as its local best. In this way, speciation learns

about the region of a new species from the memories of all the particles in the

swarm.

2.4 Isolated speciation

Preliminary experiments in this study showed that SPSO requires more par-

ticles compared to other PSOs in order to achieve convergence. Particles in

SPSO need to be close enough to each other to form species. Otherwise, there

can be isolated particles that do not participate in any speciation. The thresh-

old radius for speciation rspecies needs to be kept small to ensure finding the

solutions that are close to each other. Since each species seed represents a

candidate nest, the species radius is critical for multi-modal optimization. The

question arises of how many particles are required to make sure that enough

species are formed. If particles are too sparsely distributed, there is a chance

8



that isolated particles only consume function evaluations at fixed positions. In

order to overcome this shortcoming, as shown in Figure 1, isolated particles

form an additional species. However, isolated particles’ experience should not

be trusted as much as that of the other particles because they are not actively

contributing to solution finding. Particles’ experience is quantified using the

particle age, which is defined as the number of consecutive iterations during

which the particle has participated in speciation, and their ages are reset to one

as particles are isolated. The particle age is also used to define nesting criteria

in Section 2.7. By incorporating this strategy, the swarm size is significantly

decreased to the same level as other PSOs.

Isolated speciation

Species radius

Fig. 1. Isolated speciation. The black dots are particles, the solid circles are their
speciation regions, and the particles in the dashed splines generate species.

2.5 Fitness assimilation

ISPSO adopts particle volume from the Spatial Extension PSO (SEPSO)

(Krink et al., 2002) using the pre-specified radius rprey, but a collision does not

make particles bounce from each other. Fitness assimilation or preying takes

place between two particles in contact. That is, the past experiences of the

two particles are combined to create a new particle. Each particle keeps three

memories including its current position, current velocity, and individual best

position. The current position of the new particle is based on the fitness values

at the current positions of the two particles. The position and velocity of the
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particle with the higher fitness are assigned to the new particle. Similarly, the

new particle’s individual best position is assigned the better individual best

position of the two original particles. The new particle replaces one of the two

original particles. To replace the remaining particle, one additional particle

is quasi-randomly generated. This new particle fills a gap between previously

quasi-randomly generated particles.

2.6 Preemptive nesting

After having found a number of solutions, the swarm should avoid converg-

ing to existing nests to prevent unnecessary function evaluations at positions

near the known possible solutions. ISPSO replaces particles falling within the

nesting radius rnest of existing solutions with new quasi-random particles. This

technique is referred to as “exclusion,” which is the term also used in diver-

sity enhancing mechanisms for multi-swarm dynamic optimization (Blackwell

and Branke, 2006). However, while the exclusion in multi-swarm dynamic op-

timization keeps diversity among swarms to prevent multiple swarms from

converging to a single point, the exclusion in ISPSO expels individual parti-

cles converging to already found optima. As a side effect of this behavior, some

particles may cluster around the edge of this region. In order to prevent this

unwanted convergence, a “turbulence region” surrounding the nesting area is

defined so that any species seed moving into this region is assigned a small

random velocity, and individuals belonging to this species may not be able to

cluster around the existing nest.

The turbulence region is different from “turbulence” (Fieldsend and Singh,

2002) or “craziness” (Kennedy and Eberhart, 1995) applied to the particle

velocity in that turbulence regions only affect particles near existing nests

while turbulence affects all the particles in the swarm randomly to introduce

artificial variations into the system.
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2.7 Nesting and stopping criteria

Because there are no absolute stopping criteria when searching for local optima

(Brits et al., 2007), it is difficult to claim that a local optimum has been

found. The fitness values of global and local optima may not be determined

in real-world problems; hence no errors may be calculated. Therefore, the

error threshold used in many algorithms for detecting optima and stopping is

not always practical. In ISPSO, the pre-specified age threshold a is used to

determine whether the experience of an old particle should be trusted or not.

If the age of any species seed exceeds the age threshold and the normalized

geometric mean of its positions and the standard deviation of its fitness values

during the most recent 50% of lifetime are small enough, the seed is considered

a possible solution referred to as a nest.

The standard deviation of the fitness values of particle i from age bai/2 + 0.5c
to ai is used for nesting, where b·c and ai denote the flooring function and the

current age of particle i, respectively. The threshold value for the standard

deviation is called εf . However, a small standard deviation of the fitness value

does not guarantee the convergence of a particle when the particle moves

around a near-plateau region with very similar fitness values.

In order to attain increased accuracy in nesting, ISPSO uses the normalized

geometric mean defined as follows:

NGM =




D∏

j=1

x+
i,j − x−i,j

xmax,j − xmin,j




1/D

(1)

where D is the problem dimension, x+
i,j is max{xk

i,j | bai/2 + 0.5c ≤ k ≤
ai}, x−i,j is min{xk

i,j | bai/2 + 0.5c ≤ k ≤ ai}, and xmax,j and xmin,j are the

jth dimensional upper and lower bounds of the search space, respectively. xk
i,j

denotes the jth dimensional position of particle i at age k. A small value of

the normalized geometric mean implies that particle i has converged. The
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threshold value for the normalized geometric mean is called εx.

Note that Equation (1) is used for detecting local optima, and ISPSO cannot

stop even after the above nesting condition is satisfied because there can be

more than one local optimum. Therefore, a separate stopping rule needs to

be defined to determine when to finish the algorithm. In multi-modal opti-

mization, the number of iterations required to find an optimum needs to be

taken into consideration to reduce the risk of premature stopping and missing

some optima. As the algorithm finds more optima, it tends to require more

iterations because of the increasing rate of preemptive nesting and decreasing

number of undiscovered optima. This level of difficulty in finding remaining

optima is quantified using variables Iavg and Imax defined as the average and

maximum number of iterations between successive discoveries of two optima,

respectively. The more optima the algorithm finds, the larger Imax/Iavg tends

to be in overall. We assume that difficulty is “normal” when Imax/Iavg is 1.

Defining variable E as the number of the exclusions that have happened since

the last optimum was found, we assume that no more than one exclusion per

particle is expected in the “normal” condition. If exclusions per particle oc-

cur more frequently than usual, we stop the algorithm based on the following

criterion:
E

|S| > fE × Imax

Iavg

(2)

where |S| is the swarm size, and fE is the “exclusion factor” which is used

to define the expected rate of exclusion due to preemptive nesting. Inequality

(2) measures how well particles performed in the past iterations and triggers

a stopping of the algorithm based on it.

2.8 Pseudocode of the ISPSO algorithm

Summarizing the aforementioned extensions to SPSO, the pseudocode of the

ISPSO algorithm is given in Figure 2.
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Define a problem: D, ~xmin, ~xmax, ~vmax, f(~x).
Initialize the ISPSO parameters: |S|, rspecies, rprey, rnest

Initial population from scrambled Sobol’ sequences.
N ← ∅: Storage for nests.
repeat

Evaluate f(~xi) and pbest for i = 1, . . . , |S|.
Increase the ages of all particles by 1.
A← S sorted in the decreasing order of fitness.
B ← ∅: Species seeds.
C ← ∅: Particles participating in speciation.
for all ~a ∈ A do {Proximity-based speciation}

found← FALSE
for all ~b ∈ B do

if |~a−~b| ≤ rspecies then
found← TRUE
C ← C ∪ {~a,~b}
lbest of ~a← ~b
break

if found = FALSE then
B ← B ∪ {~a}
lbest of ~a← ~a
Speciation takes place.

Isolated speciation in Figure 1.
Update velocity ~vi for i = 1, . . . , |S|.
for all ~n ∈ N do {Turbulence of species seeds}

for all ~b ∈ B do
if |~b− ~n| < 2× rnest then

Add a small turbulence to the velocity of ~b.
Check for convergence, and add solutions to N if any.
Update position ~xi for i = 1, . . . , |S|.
Fitness assimilation using rprey.
Preemptive nesting using rnest.

until The stopping criteria are met.

Fig. 2. Pseudocode of the ISPSO algorithm.

3 Leave-it-out tests

ISPSO was tested on the five functions suggested by Beasley et al. (1993) to

see how much each extension introduced in Section 2 contributes to solution

finding. These test functions were modified to be suitable for minimization
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problems as follows:

F1(x) = 1− sin6(5πx),

F2(x) = 1− exp

(
−2 log(2)×

(
x− 0.1

0.8

)2
)
× sin6(5πx),

F3(x) = 1− sin6
(
5π(x3/4 − 0.05)

)
,

F4(x) = 1− exp

(
−2 log(2)×

(
x− 0.08

0.854

)2
)
× sin6

(
5π(x3/4 − 0.05)

)
,

and

F5(x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2.

The search spaces are [0, 1] for F1 to F4 and [−6, 6]2 for F5, the same search

spaces used in Beasley et al. (1993). F1 has equally spaced minima at 0.1,

0.3, 0.5, 0.7, and 0.9; F2 has almost equally spaced minima at 0.100, 0.299,

0.499, 0.698, and 0.898; F3 has minima at 0.080, 0.247, 0.451, 0.681, and

0.934; and F4 has minima at 0.080, 0.246, 0.449, 0.679, and 0.930. F1 and F3

have five global minima while F2 and F4 have one global minimum and four

local minima. F5 has four almost equal minima at (3.58,−1.86), (3.0, 2.0),

(−2.815, 3.125), and (−3.78,−3.28).

The swarm size was set to |S| = 20, the default value used by Brits et al.

(2007), and the species radius was set to rspecies = 0.1L, as suggested by Li

(2004) for one-dimensional problems, where L is the diagonal length of the

search space. The nest radius and prey radius were set to rnest = 0.01L and

rprey = 10−4L, respectively. The threshold values for nesting were set to a = 10,

εx = 10−3, and εf = 10−4. An exclusion factor of fE = 3 was used for stopping

criteria.

Particle movement was controlled with ψ1 = ψ2 = 2.05, as recommended by

Eberhart and Shi (2000) and Clerc and Kennedy (2002), and ~vmax was set to a

small value of 0.1× (~xmax− ~xmin). Newly created particles are assigned a non-

zero random velocity constrained to be within the maximum initial velocity,

|~vmax,0|, to prevent early stagnation. In this test, a maximum initial velocity

of |~vmax,0| = 10−3L was used.

14



We evaluated three influential extensions introduced in Section 2 by removing

each extension one at a time to examine its effects on the results of test runs.

We evaluated preemptive nesting, isolated speciation, and Sobol’ sequences in

this manner. We did not test the nesting and stopping criteria in this manner

because they are required to make ISPSO aware of the multi-modal nature of

the test functions.

Table 1 summarizes the results of the test. Preemptive nesting helps reduce

function evaluations substantially, and the difference in the number of function

evaluations required by the full algorithm and the algorithm with preemptive

nesting removed is statistically significant (i.e., p < 0.0001) in a Wilcoxon

rank-sum test for all five test functions. Without preemptive nesting, parti-

cles tend to converge to solutions around peaky zones of the objective function

surface (i.e., solutions around which small changes in the parameter values pro-

duce large changes in the objective function) whether or not they are already

nested by other species. Because nesting occurs multiple times near the same

optimum, the nesting rate per optimum is greater than 100%, which should

not happen. It is also shown that when isolated speciation is eliminated, there

is a slight increase in the number of function evaluations required, though

these differences are not significant at p = 0.05. The exception is for test func-

tion F5 where the increase in function evaluations is large and statistically

significant (i.e., p < 0.0001). Increased function evaluations without isolated

speciation is expected because isolated particles then cannot move actively

and may nest incorrectly. High incorrect nesting rates imply that the swarm

recognizes samples as being proximate to true solutions when they are actually

not. Isolated speciation also helps reduce the swarm size compared to SPSO.

SPSO requires more particles in the swarm because all the particles need to

be close enough to each other so that no particle is left alone after speciation.

Using pseudo-random sequences instead of Sobol’ sequences again increases

the number of function evaluations required somewhat. As with isolated spe-
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ciation, the p-values from the Wilcoxon rank-sum test comparing the full algo-

rithm with the algorithm in which random sequences replace Sobol’ sequences

are 0.03, 0.01, 0.16, 0.45, and < 0.0001 for functions F1–F5 respectively. This

result suggests that, overall, this change is not statistically significant at the

p = 0.05 level except for function F5 after making the needed Bonferroni

correction. Overall, preemptive nesting is the modification in the algorithm

that makes the most substantial difference with the test problems. The other

modifications help but to a lesser degree.

4 Comparison of ISPSO and NichePSO

A comparison of the performance of ISPSO and NichePSO when finding

global and local optima in a specific problem is presented in this section. We

used NichePSO as the benchmark algorithm because, in Brits et al. (2007),

NichePSO has shown better performance in locating global and local optima

in test functions than other multi-modal optimization algorithms such as lbest

PSO, nbest PSO, sequential GA, and deterministic crowding GA. The problem

consisted of finding the six parameters of the modified Bartlett-Lewis rectan-

gular pulse (MBLRP) stochastic rainfall simulation model (Rodriguez-Iturbe

et al., 1988) for 192 rain gages across the United States that have more than

50 years of hourly rainfall records. The finding of the six model parameters

required a six-dimensional optimization process at each gage.

4.1 Modified Bartlett-Lewis rectangular pulse model

The Modified Bartlett-Lewis rectangular pulse (MBLRP) model (Rodriguez-

Iturbe et al., 1988) stochastically generates synthetic rainfall time series rep-

resented as sequences of storms comprising rain cells as shown in Figure 3.

In this model, random variable X1 represents the storm arrival time, X2 the
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Table 1
Results of the leave-it-out tests. A total of 30 independent optimization runs were
conducted for each test, and the means and standard errors (± numbers) are re-
ported. Nesting rate per optimum: the average number of nests within rnest of an
optimum times 100 (%). Incorrect nesting rate: the total number of nests outside
rnest of an optimum divided by the number of total nests (%).

Function
No

preemptive
nesting

No isolated
speciation

Pseudo-
random

sequences
ISPSO

Function
evaluations
until the last
nesting occurs

F1 39799± 34 1001± 60 1160± 68 949± 45

F2 39633± 45 939± 74 1095± 65 933± 53

F3 39859± 32 1021± 52 1185± 78 991± 47

F4 39541± 58 945± 46 1099± 63 998± 41

F5 39635± 68 36658±1049 2369± 133 1769± 57

Function
evaluations
until the
algorithm stops

F1 40000± 0 1513± 57 1670± 81 1461± 50

F2 40000± 0 1461± 78 1667± 73 1471± 62

F3 40000± 0 1615± 42 1738± 79 1588± 40

F4 40000± 0 1476± 49 1642± 74 1565± 32

F5 40000± 0 37902± 932 4035± 114 3525± 57

Solutions found
(%)

F1 100± 0 99.33± 0.67 99.33± 0.67 100± 0

F2 100± 0 100± 0 99.33± 0.67 100± 0

F3 100± 0 97.33± 1.26 98.67± 0.93 100± 0

F4 99.33± 0.67 100± 0 100± 0 100± 0

F5 100± 0 100± 0 100± 0 100± 0

Nesting rate
per optimum
(%)

F1 4042± 32 99± 1 99± 1 100± 0

F2 2027± 22 100± 0 99± 1 100± 0

F3 4054± 54 97± 1 99± 1 100± 0

F4 1590± 26 100± 0 100± 0 100± 0

F5 2468± 15 100± 0 100± 0 100± 0

Incorrect
nesting rate
(%)

F1 0± 0 0.56± 0.56 0.67± 0.67 0± 0

F2 0± 0 1.11± 0.77 0± 0 0± 0

F3 0± 0 2.67± 1.26 0± 0 0± 0

F4 0± 0 0± 0 0± 0 0± 0

F5 0± 0 95.97± 0.13 0± 0 0± 0

17



duration of storm activity (i.e., the time window, after the beginning of a

storm, within which rain cells can arrive), X3 the rain cell arrival time within

the duration of storm activity, X4 the rain cell duration, and X5 the rain cell

intensity. X1 and X3 are governed by Poisson processes with parameters λ

and β, respectively. X2, X4, and X5 vary according to exponential distribu-

tions with parameters γ, η, and 1/µ, respectively; where η, in turn, varies

according to a Gamma distribution with parameters ν and α. Additionally, φ

and κ are parameters commonly used instead of γ and β, where φ = γ/η and

κ = β/η. Therefore, the MBLRP model has six parameters: λ, ν, α, µ, φ, and

κ. Rainfall time series are generated by randomly drawing X1, X2, X3, X4,

and X5 values according to their respective Poisson processes or probability

distributions and parameters.

The MBLRP model is not intended to reproduce observed rainfall at a given

rain gage but to replicate its statistics (i.e., mean, variance, lag-1 autocorrela-

tion coefficient and probability of zero at various accumulation intervals such

as hourly or daily). Note that the statistics of the synthetic rainfall time series

can be estimated from the parameter values only, without having to actually

generate the series. The objective function

OF =
n∑

k=1

wk


1− Fk(~θ)

fk


 (3)

represents the disagreement between the statistics of the simulated and ob-

served rainfall time series, and was used for calibrating the model, where ~θ is

the parameter set (λ, ν, α, µ, φ, κ), n is the number of statistics being compared

(i.e., four in this case), Fk(~θ) and fk are the kth statistic of the simulated and

observed rainfall time series, respectively, and wk is a weight factor given to

the kth statistic. Estimating the values of the model parameters that minimize

the disagreement between the statistics of the simulated and observed rainfall

time series at a gage is called “calibration” and was conducted for each of the

192 gages.
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Fig. 3. Schematic of the MBLRP model. Arrivals of storms (white circles) are fol-
lowed by rain cells (rectangles initiated by black circles).

4.2 Multi-modality of the MBLRP model

The existence of multiple parameter sets that reproduce well the statistics of

the observed rainfall at a gage is associated with multiple minima of the ob-

jective function in the parameter space, and is referred to as “multi-modality.”

This is a well-documented problem with MBLRP models (Gyasi-Agyei, 1999;

Onof et al., 2000). To better understand the effect of multi-modality on the

estimation of the model parameters, consider a case in which the MBLRP

model reproduces rainfall statistics at two closely located rain gages that, due

to their proximity, are assumed to experience the same precipitation. How-

ever, although both gages experience the same precipitation, the rainfall at

one could be represented by two rain cells (see Figure 4a), while at the other by

six rain cells (see Figure 4b). Note that, despite the difference in the number of

rain cells and in their durations and intensities, the overall precipitation series

can be identical. That is, a storm—or a precipitation pattern characterized by

its rainfall statistics if we refer to a longer period—can be represented equally

well by different parameter sets. Interpolation of the parameter values, for ex-

ample, to generate parameter maps, would require determining parameter sets

of comparable value at neighboring gages. Therefore, multiple solutions (i.e.,

global and local) would have to be found at each gage and the parameter sets

most similar to those at their neighboring gages would be selected as the best

solutions. ISPSO was used to find multiple optima of the objective function at
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each gage; however, the procedure for selecting the best solutions out of those

optima found at each gage is unrelated to the optimization algorithm, and it

is not discussed here.
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(b) Gage 2

Fig. 4. Examples showing that the same storm can be modeled with different sets
of MBLRP parameters. One storm can be modeled with two and six rain cells at
gages (a) 1 and (b) 2, respectively. Dashed lines indicate total rainfall intensity.

4.3 Results

ISPSO and NichePSO were used to find multiple optima for each rain gage

and month (i.e., 192 gages × 12 months), and the solutions found are com-

pared here. NichePSO used a solution identification criterion where a solution

is found when the standard deviation of the ten previous objective function

values is less than 10−4. ISPSO also used the same standard deviation, but

employed the normalized geometric mean defined in Equation (1) as an addi-

tional criterion. A maximum number of iterations of 2,000 was used to stop

both algorithms.

NichePSO found, on average, 14 solutions per gage per month, while ISPSO

found three. However, these solutions needed to be examined to verify if they

were true minima. For this verification, we took two sample solutions randomly

for the same gage and month (i.e., one found by ISPSO and the other by

NichePSO); built 15 two-dimensional (2D) parameter spaces (i.e., the number

of combinations of six taken two at a time) from each sample solution by

fixing four parameter values at a time; and drew the 2D projection point of
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Fig. 5. Two-dimensional plots of the parameter space created by sample solutions.
Contour labels are log scaled, and the X symbols indicate the sample solutions.

the solution on top of the objective function surface as shown in Figure 5 for

the case of parameters λ and κ. Figure 5 shows the influence of two parameters

with the others fixed, which is a similar approach to the partial dependence

plots commonly used in statistics. If a sample solution came close to a true

minimum, the projection point of the solution on the 2D parameter space

must also come close to the minimum. Otherwise, 2D parameter spaces may

not even contain any minimum because those parameter spaces were created

using a non-optimal solution.

The purpose of showing the plots of Figure 5 is to present in a 2D space an

optimum found in the six-dimensional (6D) space. It happens that a param-

eter set that generates an optimum of the objective function in the 6D space

also generates an optimum in the 2D space, if the other four parameters are

fixed to the values that generated the optimum. The opposite, though, is not

necessarily true because an optimum in the 2D space might not correspond to

an optimum in the 6D space. In our specific real-world problem, the number

of 2D plots that needed to be inspected to determine whether the projec-

tion point of a solution was close to a true minimum is 570,330 (i.e., 38,022

solutions×15 2D plots/solution). We inspected a large number of plots, but
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not all the 570,330 plots, and all visual inspections confirmed a correspondence

between the projection point of the solution and the global optimum in the

2D space. These inspections also confirmed that there is no multi-modality in

the 2D space and the global optimum corresponds to the point with the lowest

objective function value. However, even if we had inspected all the plots and

confirmed the correspondence, that fact would have not been conclusive proof

either. Therefore, the assumption that there is a single optimum in the 2D

space was made. This assumption was based on and corroborated by what we

observed in the large number of 2D plots inspected in all of which there was

only one optimum.

Based on the assumption made above, Figure 5a shows that the sample so-

lution found by ISPSO is very close to the true minimum in the 2D space

λ-κ. In Figure 5b, the sample solution found by NichePSO seems to have been

identified prematurely before reaching the true minimum. One reason for this

premature solution identification might be because NichePSO uses only the

standard deviation of a particle’s fitness value before creating subswarms. The

problem with using the standard deviation of the fitness value as the only mea-

sure of particle stabilization is discussed in Section 2.7. Similar results were

found for the other 2D parameter spaces and other sample solutions, and also

in the other rain gages and months, which confirmed that ISPSO solutions

were closer to true minima than those found by NichePSO.

Table 2
Statistics of minimum objective function values per gage per month.

Algorithm Mean
Standard
Deviation

Median Minimum Maximum

ISPSO 0.203 4.199 0.033 0.0013 196.30

NichePSO 118.525 942.814 2.475 0.0054 27365.35

We performed the same verification on all the solutions found by each algo-

rithm and compared their normalized axial distances defined as (xd−x̂d)/(xmax,d−
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Fig. 6. Histograms of the normalized distance between the solutions identified by (a)
ISPSO and (b) NichePSO, respectively, and the global minimum in two-dimensional
parameter spaces.

xmin,d) where xd and x̂d are the d-dimensional coordinates of the solution and

global minimum on the 2D parameter space, respectively, and xmax,d and xmin,d

are the maximum and minimum values of the d-dimensional parameter space,

respectively. For each solution and parameter, five normalized axial distances

were calculated because each parameter was paired with each of the other

five parameters one at a time. These distances were then used to draw the

histograms of Figure 6. Figure 6 shows normalized axial distances between

all the solutions and global minima along the α axis in 2D spaces. It can be

seen that the spread around zero is less for ISPSO than for NichePSO, and

similar results were observed in the other axes, which implies that ISPSO’s so-

lutions are closer to global minima than those found by NichePSO. It was also

observed that the objective function values of the solutions found by ISPSO

were significantly lower than those found by NichePSO for the same gage and

month, as shown in Table 2. These statistics, again, confirm that NichePSO

identifies solutions too soon before particles have become stable and reached

true minima. The tendency of the NichePSO algorithm to stop approaching

the optimum and to find the same optimum multiple times was observed by

the authors when applying it to the Griewank function (See Cho et al., 2008).
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Although NichePSO found a greater number of solutions, it has been demon-

strated that many of them are not close to true minima, and their objective

function values are consistently worse than those of ISPSO’s solutions. From

these observations, we conclude that ISPSO is more reliable at finding good

local minima than NichePSO in the real-world 6D problem presented here.

5 Summary and conclusions

The Species-based PSO (SPSO) was extended for multi-modal problems by

employing “isolated speciation.” Particles left alone after proximity-based spe-

ciation form an additional species called “the isolated species” to make them-

selves move around the search space. This simple modification of SPSO guar-

antees more dynamic speciation of particles and reduces swarm size required

to locate all solutions. This behavior helps reduce unnecessary function evalu-

ations that do not contribute to solution finding. In addition, the exploration

of the search space was improved through deterministic low-discrepancy sam-

pling during optimization. This sampling takes place through the exclusion of

particles from the small regions of known solutions and fitness assimilation

between particles in contact. The exclusive regions of already found solu-

tions also prevent unnecessary function evaluations near them and increase

sampling uniformity. This approach is called the Isolated-Speciation-based

PSO (ISPSO). Practical stopping criteria were introduced to replace the er-

ror threshold because errors cannot be always determined during optimization

runs.

A six-dimensional rainfall simulation model called modified Bartlett-Lewis

rectangular pulse (MBLRP) was used as an example of real-world complex

problems. The MBLRP model exhibits characteristics of high multi-modality,

and it is important to find good candidate solutions for further analysis. This

model was solved for 192 rain gages in the United States using ISPSO and
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NichePSO. It was concluded that ISPSO is more reliable at finding true min-

ima with low objective function values than NichePSO.

This paper does not address the case in which there are more local optima

than could possibly be detected. In such a case, an additional criterion for

selecting the local optima to be considered should be implemented. Further

research needs to be done to decide which local optima to focus on during

optimization.
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